Электрическая проводимость среды. Электрическая проводимость. Определение, единицы измерения. Кондуктометрия — измерение электропроводности воды

25.03.2024

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l .

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l )/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Выбор сечения кабеля

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Электросопротивление других металлов

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

Видео

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении свободные электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Таким образом, электроны, проходя по проводнику, встречают сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическим сопротивлением проводника (оно обозначается латинской буквой r) обусловлено явление преобразования электрической энергии в тепловую при прохождении электрического тока по проводнику. На схемах электрическое сопротивление обозначается так, как показано на рис. 18.

За единицу сопротивления принят 1 ом . Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому, вместо того чтобы писать: «Сопротивление проводника равно 15 ом», можно написать просто: r = 15 Ω.

1000 ом называется 1 килоом (1 ком, или 1 к Ω).

1 000 000 ом называется 1 мегом (1 мгом, или 1 MΩ).

Прибор, обладающий переменным электрическим сопротивлением и служащий для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются, как показано на рис. 18. Как правило, реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток поразному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника тоже оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, константан", никелин и др.) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от длины проводника, поперечного сечения проводника, материала проводника, температуры проводника.

При сравнении сопротивлений проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Сопротивление (в омах) проводника длиной 1 м, сечением 1 мм 2 называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

Сопротивление проводника можно определить по формуле

где r - сопротивление проводника, ом;

ρ - удельное сопротивление проводника;

l - длина проводника, м;

S - сечение проводника, мм2.

Из указанной формулы получаем размерность для удельного сопротивления

В табл. 1 даны удельные сопротивления некоторых проводников.

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 ом. Чтобы получить 1 ом сопротивления, нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро - 1 ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро - лучший проводник, но большая стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм" обладает сопротивлением 0,0175 ом. Чтобы получить сопротивление в 1 ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Подробная характеристика металлов и сплавов приведена в табл. 2.

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2:

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2:

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример3. Для радиоприемника необходимо намотать сопротивление в 30 ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки:

Пример 4. Определить сечение нихромовой проволоки длиной 20 Ж, если сопротивление ее равно 25 ом:

Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Ранее было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включен амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40-50%. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 ом первоначального сопротивления и на 1 0 температуры, называется температурным коэффициентом сопротивления и обозначается буквой α (альфа).

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Электрическая проводимость – это способность веществ проводить электрический ток под действием внешнего электрического поля. Электрическая проводимость – величина, обратная электрическому сопротивлению L = 1/ R .

где ρ – удельное сопротивление, Ом·м; - удельная электрическая проводимость, См/м (сименс/метр);S – поперечное сечение, м 2 ; l – длина проводника, м) (в электрохимии удельная электрическая проводимость () читается - каппа ).

Единица измерения L – сименс (См), 1 См = 1 Ом -1 .

Удельная электрическая проводимость раствора характеризует проводимость объема раствора, заключенного между двумя параллельными электродами, имеющими площадь по 1 м 2 и расположенными на расстоянии 1 м друг от друга. Единица измерения в системе СИ - См·м -1 .

Удельная проводимость раствора электролита определяется количеством ионов, переносящих электричество и скоростью их миграции:

, (2.5)

где α – степень диссоциации электролита; С – молярная концентрация эквивалента, моль/м 3 ; F – число Фарадея, 96485 Кл/моль;
- абсолютные скорости движения катиона и аниона (скорости при градиенте потенциала поля, равном 1 В/м); единица измерения скорости - м 2 В -1 с -1 .

Из уравнения (2.5) следует, что зависит от концентрации как для сильных так и для слабых электролитов (рисунок 2.1):

Рисунок 2.1 – Зависимость удельной электрической проводимости от концентрации электролитов в водных растворах

В разбавленных растворах при С → 0 стремится к удельной электропроводности воды, которая составляет около 10 -6 См/м и обусловлена присутствием ионов Н 3 О + и ОН - . С ростом концентрации электролита, вначале увеличивается, что отвечает увеличению числа ионов в растворе. Однако, чем больше ионов в растворе сильных электролитов, тем сильнее проявляется ионное взаимодействие, приводящее к уменьшению скорости движения ионов. У слабых электролитов в концентрированных растворах заметно снижается степень диссоциации и, следовательно, количество ионов, переносящих электричество. Поэтому, почти всегда, зависимость удельной электрической проводимости от концентрации электролита проходит через максимум.

2.1.3 Молярная и эквивалентная электрические проводимости

Чтобы выделить эффекты ионного взаимодействия, удельную электрическую проводимость делят на молярную концентрацию (С, моль/м 3), и получают молярную электрическую проводимость ; или делят на молярную концентрацию эквивалента и получаютэквивалентную проводимость.

. (2.6)

Единицей измерения является м 2 См/моль. Физический смысл эквивалентной проводимости состоит в следующем: эквивалентная проводимость численно равна электрической проводимости раствора, заключенного между двумя параллельными электродами, расположенными на расстоянии 1 м и имеющими такую площадь, что объем раствора между электродами содержит один моль эквивалента растворенного вещества (в случае молярной электрической проводимости – один моль растворенного вещества). Таким образом, в случае эквивалентной электрической проводимости в этом объеме будет N А положительных и N А отрицательных зарядов для раствора любого электролита при условии его полной диссоциации (N А – число Авогадро). Поэтому, если бы ионы не взаимодействовали друг с другом, то сохранялась бы постоянной при всех концентрациях. В реальных системахзависит от концентрации (рисунок 2.2). При С → 0,
→ 1, величинастремится к
, отвечающей отсутствию ионного взаимодействия. Из уравнений (2.5 и 2.6) следует:

Произведение
называютпредельной эквивалентной электрической проводимостью ионов , или предельной подвижностью ионов:

. (2.9)

Соотношение (2.9) установлено Кольраушем и называется законом независимого движения ионов . Предельная подвижность является специфической величиной для данного вида ионов и зависит только от природы растворителя и температуры. Уравнение для молярной электрической проводимости принимает вид (2.10):

, (2.10)

где
- число эквивалентов катионов и анионов, необходимых для образования 1 моль соли.

Пример:

В случае одновалентного электролита, например, HCl,
, то есть молярная и эквивалентная электрические проводимости совпадают.

Рисунок 2.2 – Зависимость эквивалентной электропроводности от концентрации для сильных (а) и слабых (б) электролитов

Для растворов слабых электролитов эквивалентная электрическая проводимость остается небольшой вплоть до очень низких концентраций, по достижении которых она резко поднимается до значений, сравнимых с сильных электролитов. Это происходит за счет увеличения степени диссоциации, которая, согласно классической теории электролитической диссоциации, растет с разбавлением и, в пределе, стремится к единице.

Степень диссоциации можно выразить, разделив уравнение (2.7) на (2.8):

.

С увеличением концентрации растворов сильных электролитов уменьшается, но незначительно. Кольрауш показал, чтотаких растворов при невысоких концентрациях подчиняется уравнению:

, (2.11)

где А – постоянная, зависящая от природы растворителя, температуры и валентного типа электролита.

По теории Дебая – Онзагера снижение эквивалентной электрической проводимости растворов сильных электролитов связано с уменьшением скоростей движения ионов за счет двух эффектов торможения движения ионов, возникающих из-за электростатистического взаимодействия между ионом и его ионной атмосферой. Каждый ион стремится окружить себя ионами противоположного заряда. Облако заряда называют ионной атмосферой, в среднем оно сферически симметрично.

Первый эффект – эффект электрофоретического торможения . При наложении электрического поля ион движется в одну сторону, а его ионная атмосфера – в противоположную. Но с ионной атмосферой за счет гидратации ионов атмосферы увлекается часть растворителя, и центральный ион при движении встречает поток растворителя, движущегося в противоположном направлении, что создает дополнительное вязкостное торможение иона.

Второй эффект – релаксационного торможения . При движении иона во внешнем поле атмосфера должна исчезать позади иона и образовываться впереди него. Оба эти процесса происходят не мгновенно. Поэтому впереди иона количество ионов противоположного знака меньше, чем позади, то есть облако становится несимметричным, центр заряда атмосферы смещается назад, и поскольку заряды иона и атмосферы противоположны, движение иона замедляется. Силы релаксационного и электрофоретического торможения определяются ионной силой раствора, природой растворителя и температурой. Для одного и того же электролита, при прочих постоянных условиях, эти силы возрастают с увеличением концентрации раствора.

Электрическое сопротивление, выражаемое в омах, отличается от понятия «удельное сопротивление». Чтобы понять, что такое удельное сопротивление, надо связать его с физическими свойствами материала.

Об удельной проводимости и удельном сопротивлении

Поток электронов не перемещается беспрепятственно через материал. При постоянной температуре элементарные частицы качаются вокруг состояния покоя. Кроме того, электроны в зоне проводимости мешают друг другу взаимным отталкиванием из-за аналогичного заряда. Таким образом возникает сопротивление.

Удельная проводимость является собственной характеристикой материалов и количественно определяет легкость, с которой заряды могут двигаться, когда вещество подвергается воздействию электрического поля. Удельное сопротивление является обратной величиной и характеризуется степенью трудности, которую электроны встречают при своих перемещениях внутри материала, давая представление о том, насколько хорош или плох проводник.

Важно! Удельное электрическое сопротивление с высоким значением указывает на то, что материал плохо проводящий, а с низким значением – определяет хорошее проводящее вещество.

Удельная проводимость обозначается буквой σ и рассчитывается по формуле:

Удельное сопротивление ρ, как обратный показатель, можно найти так:

В этом выражении E является напряженностью создаваемого электрического поля (В/м), а J – плотностью электротока (А/м²). Тогда единица измерения ρ будет:

В/м х м²/А = ом м.

Для удельной проводимости σ единицей, в которой она измеряется, служит См/м или сименс на метр.

Типы материалов

В соответствии с удельным сопротивлением материалов, их можно классифицировать на несколько типов:

  1. Проводники. К ним относятся все металлы, сплавы, растворы, диссоциированные на ионы, а также термически возбужденные газы, включая плазму. Из неметаллов можно привести в пример графит;
  2. Полупроводники, фактически представляющие собой непроводящие материалы, кристаллические решетки которых целенаправленно легированы включением чужеродных атомов с большим или меньшим числом связанных электронов. В результате в структуре решетки образуются квазисвободные избыточные электроны или дырки, которые вносят вклад в проводимость тока;
  3. Диэлектрики или изоляторы диссоциированные – все материалы, которые в нормальных условиях не имеют свободных электронов.

Для транспортировки электрической энергии или в электроустановках бытового и промышленного назначения часто используемый материал – медь в виде одножильных или многожильных кабелей. Альтернативно применяется металл алюминий, хотя удельное сопротивление меди составляет 60% от такого же показателя для алюминия. Но он гораздо легче меди, что предопределило его использование в линиях электропередач сетей высокого напряжения. Золото в качестве проводника применяется в электроцепях специального назначения.

Интересно. Электропроводность чистой меди была принята Международной электротехнической комиссией в 1913 году в качестве стандарта по этой величине. Согласно определению, проводимость меди, измеренная при 20°, равна 0,58108 См/м. Это значение называется 100% LACS, а проводимость остальных материалов выражается как определенный процент LACS.

Большинство металлов имеют значение проводимости меньше 100% LACS. Однако есть исключения, такие как серебро или специальная медь с очень высокой проводимостью, обозначенные С-103 и С-110, соответственно.

Диэлектрики не проводят электричество и используются в качестве изоляторов. Примеры изоляторов:

  • стекло,
  • керамика,
  • пластмасса,
  • резина,
  • слюда,
  • воск,
  • бумага,
  • сухая древесина,
  • фарфор,
  • некоторые жиры для промышленного и электротехнического использования и бакелит.

Между тремя группами переходы являются текучими. Известно точно: абсолютно непроводящих сред и материалов нет. Например, воздух – изолятор при комнатной температуре, но в условиях мощного сигнала низкой частоты он может стать проводником.

Определение удельной проводимости

Если сравнивать удельное электрическое сопротивление различных веществ, требуются стандартизированные условия измерения:

  1. В случае жидкостей, плохих проводников и изоляторов, используют кубические образцы с длиной ребра 10 мм;
  2. Величины удельного сопротивления почв и геологических образований определяются на кубах с длиной каждого ребра 1 м;
  3. Проводимость раствора зависит от концентрации его ионов. Концентрированный раствор менее диссоциирован и имеет меньше носителей заряда, что снижает проводимость. По мере увеличения разведения увеличивается число ионных пар. Концентрация растворов устанавливается в 10%;
  4. Для определения удельного сопротивления металлических проводников используются провода метровой длины и сечения 1 мм².

Если материал, такой как металл, может обеспечить свободные электроны, то когда приложить разность потенциалов, по проводу потечет электрический ток. По мере увеличения напряжения большее количество электронов перемещается через вещество во временную единицу. Если все дополнительные параметры (температура, площадь поперечного сечения, длина и материал провода) неизменны, то отношение силы тока к приложенному напряжению тоже постоянно и именуется проводимостью:

Соответственно, электросопротивление будет:

Результат получается в ом.

В свою очередь, проводник может быть разных длины, размеров сечения и изготавливаться из различных материалов, от чего зависит значение R. Математически эта зависимость выглядит так:

Фактор материала учитывает коэффициент ρ.

Отсюда можно вывести формулу для удельного сопротивления:

Если значения S и l соответствуют заданным условиям сравнительного расчета удельного сопротивления, т. е. 1 мм² и 1 м, то ρ = R. При изменении габаритов проводника количество омов тоже меняется.

Удельное сопротивление и температура

Удельное сопротивление проводника является величиной, которая меняется с температурой, поэтому ее точно рассчитывают для показателя 20°. Если температура отличается, значение ρ необходимо отрегулировать на основе другого коэффициента, называемого температурным и обозначаемым α (единица – 1/°С). Это тоже характерное значение для каждого материала.

Модифицированный коэффициент рассчитывается на основе значений ρ, α и отклонения температуры от 20 ° Δt:

ρ1 = ρ х (1 + α х Δt).

Если до этого сопротивление было известно, то можно напрямую произвести его расчет:

R1 = R x (1 + α х Δt).

Практическое использование различных материалов в электротехнике напрямую зависит от их удельного сопротивления.

Видео

Полагаем, что J диф, J конв, J терм равны нулю и J = J мигр. Движение ионов в проводниках второго рода и электронов в проводниках первого рода вследствие разности электрических потенциалов обусловливает их способность пропускать электрический ток, т. е. их электрическую проводимость (электропроводность). Для количественной характеристики способности проводников первого и второго рода пропускать электрический ток применяют две меры электрической проводимости. Одна из них - удельная электрическая проводимость κ- является величиной, обратной удельному сопротивлению:

Удельное сопротивление определяется из формулы

где R - общее сопротивление проводника, Ом; l – расстояние между двумя параллельными плоскостями, между которыми определено сопротивление, м; S - площадь поперечного сечения проводника, м 2 .

Следовательно

и удельная электрическая проводимость определяется как величина, обратная сопротивлению одного кубического метра проводника с длиной ребра куба, равной одному метру. Единица удельной электрической проводимости: См/м. C другой стороны, по закону Ома

где Е - разность потенциалов между заданными параллельными плоскостями; I - ток.

Подставив это выражение в уравнение, определяющее удельную электрическую проводимость, получим:

При S = 1 и Е/l = 1 имеем κ = 1. Таким образом, удельная электрическая проводимость численно равна току, проходящему через сечение проводника с поверхностью в один квадратный метр, при градиенте потенциала, равном одному вольту на метр.

Удельная электрическая проводимость характеризует число носителей заряда в единице объема. Следовательно, удельная электрическая проводимость будет зависеть от концентрации раствора, а для индивидуальных веществ - от их плотности.

Второй мерой электрической проводимости является эквивалентная λ э (или молярная λ м) электрическая проводимость, равная произведению удельной электрической проводимости на число кубических метров, в которых содержится один эквивалент или один моль вещества:

λ э = κφ э; λ м = κφ м

Поскольку φ выражено в м 3 /экв или м 3 /моль, то единицей λ будет См∙м 2 /экв или См∙м 2 /моль.

Для растворов φ = 1/С, где С - концентрация, выраженная в моль/м 3 . Тогда

λ э = κ/zC и λ м = κ/С

Если же С выражена в кмоль/м 3 , то φ э = 1/(zC∙10 3); φ м = 1/(С∙10 3) и

λ э = κ/(zC∙10 3) и λ м = κ/(С∙10 3)

При определении молярной проводимости индивидуального вещества (твердого или жидкого) φ м = V M , но V м = M/d (где V м - молярный объем; М - молекулярная масса; d - плотность), сле-

до в а те л ьн о

λ м = κV м = κМ/d

Таким образом, эквивалентная (или молярная) электрическая проводимость есть проводимость проводника, находящегося между двумя параллельными плоскостями, расположенными на расстоянии одного метра друг от друга и такой площади, чтобы между ними поместился один эквивалент (или один моль) вещества (в виде раствора или индивидуальной соли).

Эта мера проводимости характеризует проводимость при оди-наковом количестве вещества (моле или эквиваленте), но содержащемся в разных объемах и, таким образом, отражает влияние сил взаимодействия между ионами как функцию межионных расстояний.

ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ

Металлы, характеризующиеся небольшой энергией перехода электрона из валентной зоны в зону проводимости, уже при нормальной температуре имеют в зоне проводимости достаточное число электронов для обеспечения высокой электрической проводимости. Проводимость металлов уменьшается с повышением температуры. Это происходит из-за того, что с ростом температуры в металлах преобладает эффект увеличения колебательной энергии ионов кристаллической решетки, оказывающий сопротивление направленному движению электронов, над эффектом увеличения числа носителей заряда в зоне проводимости. Сопротивление химически чистых металлов с повышением температуры возрастает, увеличиваясь примерно на 4∙10 –3 R 0 при повышении температуры на градус (R 0 - сопротивление при 0°С). Для большинства химически чистых металлов при нагревании наблюдается прямолинейная зависимость между сопротивлением и температурой

R = R 0 (1 + αt)

где α - температурный коэффициент сопротивления.

Температурные коэффициенты сплавов могут изменяться в широких пределах, например, у латуни α = 1,5∙10 –3 , а у константана α = 4∙10 –6 .

Удельная проводимость металлов и сплавов лежит в пределах 10 6 - 7∙10 7 См/м. Электрическая проводимость металла зависит от числа и заряда электронов, участвующих в переносе тока, и среднего времени пробега между столкновениями. Эти же параметры при данной напряженности электрического поля определяют и скорость движения электрона. Поэтому плотность тока в металле может быть выражена уравнением

где - средняя скорость упорядоченного движения зарядов; п – число электронов зоны проводимости в единице объема.

Полупроводники по своей проводимости занимают промежуточное положение между металлами и изоляторами. Чистые полупроводниковые материалы, например германий и кремний, обладают собственной проводимостью.

Рис. 5.1. Схема возникновения пары электрон проводимости (1) – дырка (2).

Собственная проводимость обусловлена тем, что при тепловом возбуждении электронов происходит их переход из валентной зоны в зону проводимости. Эти электроны под действием разности потенциалов движутся в определенном направлении и обеспечивают электронную проводимость полупроводников. При переходе электрона в зону проводимости в валентной зоне остается вакантное место - «дырка», эквивалентное присутствию единичного положительного заряда. Дырка также может перемещаться под действием электрического поля в результате перескока на ее место электрона валентной зоны, но в сторону, противоположную движению электронов зоны проводимости, обеспечивая дырочную проводимость полупроводника. Процесс образования дырки показан на рис. 5.1.

Таким образом, в полупроводнике с собственной проводимостью имеется два типа носителей заряда- электроны и дырки, которые обеспечивают электронную и дырочную проводимость полупроводника.

В полупроводнике с собственной проводимостью число электронов в зоне проводимости равно числу дырок в валентной зоне. При данной температуре в полупроводнике существует динамическое равновесие между электронами и дырками, т. е. скорость их образования равна скорости рекомбинации. Рекомбинация электрона зоны проводимости с дыркой валентной зоны приводит к «образованию» электрона в валентной зоне.

Удельная проводимость полупроводника зависит от концентрации носителей заряда, т. е. от их числа в единице объема. Обозна-чим концентрацию электронов n i , а концентрацию дырок р i . В полупроводнике с собственной проводимостью n i = p i (такие полупроводники кратко называются полупроводниками i-типа). Концентрация носителей заряда, например в чистом германии, равна n i = p i ≈10 19 м –3 , в кремнии - примерно 10 16 м –3 и составляет 10 –7 - 10 –10 % по отношению к числу атомов N.

Под действием электрического поля в полупроводнике происходит направленное движение электронов и дырок. Плотность тока проводимости складывается из электронной i e и дырочной i p плотностей токов: i = i e + i p , которые, несмотря на равенство концентраций носителей, не равны по величине, так как скорости движения (подвижности) электронов и дырок различны. Плотность электронного тока равна:

Средняя скорость движения электронов пропорциональна напряженности Е" электрического поля:

Коэффициент пропорциональности w e 0 характеризует скорость движения электрона при единичной напряженности электрического поля и называется абсолютной скоростью движения. При комнатной температуре в чистом германии w e 0 = 0,36 м 2 /(В∙с).

Из двух последних уравнений получаем:

Повторив аналогичные рассуждения для дырочной проводимости, можем записать:

Тогда для полной плотности тока:

Сравнивая выражение для iс законом Ома i = κЕ", при S = 1 м 2 получим:

Как указано выше, у полупроводника с собственной проводимостью n i = p i , следовательно

w p 0 всегда ниже w e 0 , например в германии w p 0 = 0, 18 м 2 /(В∙с), а w e 0 = 0,36 м 2 /(В∙с).

Таким образом, удельная электрическая проводимость полупроводника зависит от концентрации носителей и их абсолютных скоростей и аддитивно складывается из двух членов:

κ i = κ e + κ p

Закон Ома для полупроводников выполняется лишь в том случае, если концентрация носителей n i не зависит от напряженности поля. При высоких напряженностях поля, которые называются критическими (для германия E кр ’ = 9∙10 4 В/м, для кремния E кр ’= 2,5∙10 4 В/м), закон Ома нарушается, что связано с изменением энергии электрона в атоме и снижением энергии перевода в зону проводимости, а также с возможностью ионизации атомов решетки. Оба эффекта вызывают увеличение концентрации носителей заряда.

Электрическая проводимость при высоких напряженностях поля выражается эмпирическим законом Пуля:

ln κ = ln κ 0 + α (E’ – E кр ’)

где κ 0 - удельная проводимость при Е’ = Е кр ’.

При повышении температуры в полупроводнике происходит интенсивная генерация носителей заряда, причем их концентрация увеличивается быстрее, чем уменьшается абсолютная скорость движения электронов из-за теплового движения. Поэтому, в отличие

от металлов, электрическая проводимость полупроводников с по- вышением температуры возрастает. В первом приближении для небольшого интервала температур зависимость удельной проводимости полупроводника от температуры может быть выражена уравнением

где k - постоянная Больцмана; А - энергия активации (энергия, необходимая для перевода электрона в зону проводимости).

Вблизи абсолютного нуля все полупроводники являются хорошими изоляторами. С повышением температуры на градус их проводимость увеличивается в среднем на 3 - 7%.

При введении в чистый полупроводник примесей к собственной электрической проводимости добавляется примесная электрическая проводимость. Если, например, в германий вводить элементы V группы периодической системы (Р, As, Sb), то последние образуют решетку с германием с участием четырех электронов, а пятый электрон, в связи с малой энергией ионизации атомов примеси (около 1,6∙10 –21), переходит от атома примеси в зону проводимости. В таком полупроводнике будет преобладать электронная проводимость (полупроводник называется электронным полупроводником п-типа]. Если атомы примеси обладают большим сродством к электрону, чем германий, например элементы III группы (In, Ga, В, А1), то они отнимают электроны от атомов германия и в валентной зоне образуются дырки. В таких полупроводниках преобладает дырочная проводимость (полупроводник р-типа]. Атомы примесей, обеспечивающие электронную проводимость, являются донорами электронов, а дырочную - акцепторами) .

Примесные полупроводники обладают более высокой электрической проводимостью, чем полупроводники с собственной проводимостью, если концентрация атомов донорной N Д или акцепторной N А примеси превышает концентрацию собственных носителей заряда. При больших значениях N Д и N A можно пренебречь концентрацией собственных носителей. Носители заряда, концентрация которых преобладает в полупроводнике, называются основными. Например, в германии n-типа n n ≈ 10 22 м –3 , в то время как n i ≈ 10 19 м~ 3 , т. е. концентрация основных носителей в 10 3 раз превышает концентрацию собственных носителей.

Для примесных полупроводников справедливы соотношения:

n n p n = n i p i = n i 2 = p i 2

n p p p = n i p i = n i 2 = p i 2

Первое из этих уравнений записано для полупроводника n-типа, а второе - для полупроводника р-типа. Из данных соотношений следует, что очень небольшое количество примеси (около 10 –4 0 /о) значительно увеличивает концентрацию носителей заряда, в результате чего электрическая проводимость возрастает.

Если пренебречь концентрацией собственных носителей и считать N Д ≈n n для полупроводника n-типа и N A ≈ р р для полупроводника р-типа, то удельная электрическая проводимость примесного полупроводника может быть выражена уравнениями:

При наложении электрического поля в полупроводниках n-типа перенос заряда осуществляется электронами, а в полупроводниках р-типа - дырками.

При внешних воздействиях, например при облучении, концентрация носителей заряда изменяется и может быть разной в различных частях полупроводника. В этом случае, как и в растворах, в полупроводнике протекают процессы диффузии. Закономерности Процессов диффузии подчиняются уравнениям Фика. Коэффициенты диффузии носителей заряда значительно выше, чем ионов в растворе. Например, у германия коэффициент диффузии электронов равен 98∙10 –4 м 2 /с, дырок - 47∙10 –4 м 2 /с. Типичными полупроводниками, помимо германия и кремния, при комнатной температуре являются ряд оксидов, сульфидов, селенидов, телуридов и т. д. (например, CdSe, GaP, ZnO, CdS, SnO 2 , In 2 O 3 , InSb).

ИОННАЯ ПРОВОДИМОСТЬ

Ионной проводимостью обладают газы, некоторые твердые соединения (ионные кристаллы и стёкла), расплавленные индивидуальные соли и растворы соединений в воде, неводных растворителях и расплавах. Значения удельной проводимости проводников второго рода разных классов колеблются в очень широких пределах:


Вещество c∙10 3 , См/м Вещество c∙10 3 , См/м
Н 2 О 0.0044 NaOH 10% раствор 30% »
С 2 H 5 OH 0.0064 КОН, 29% раствор
С 3 H 7 OH 0.0009 NaCl 10% раствор 25% »
СН 3 ОН 0.0223 FeSO 4 , 7% раствор
Ацетонитрил 0.7 NiSO 4 , 19% раствор
N,N-Диметилацетамид 0.008-0.02 CuSO 4 , 15% раствор
СН 3 СOOH 0.0011 ZnС1 2 , 40% раствор
H 2 SO 4 концентрированная 10% раство 40% » NaCl (расплав, 850 °С)
НС1 40% раствор 10% » NaNO 3 (расплав 500 °С)
HNO 3 концентрированная 12% раствор MgCl 2 (расплав, 1013 °С)
А1С1 3 (расплав, 245 °С) 0.11
АlI 3 (расплав, 270 °С) 0.74
AgCl (расплав, 800 °С)
AgI (твердый)

Примечание, Значения удельной проводимости растворов приведены при 18 °С.

Однако во всех случаях приведенные значения κ на несколько порядков ниже значений κ металлов (например, удельная проводимость серебра, меди и свинца равна соответственно 0,67∙10 8 , 0,645∙10 8 и 0,056∙10 8 См/м).

В проводниках второго рода в переносе электричества могут принимать участие все сорта частиц, имеющие электрический заряд. Если ток переносят как катионы, так и анионы, то электролиты обладают биполярной проводимостью. Если же ток переносит только один какой-нибудь сорт ионов - катионы или анионы, - то наблюдается униполярная катионная или анионная проводимость.

В случае биполярной проводимости ионы, двигающиеся быстрее, переносят большую долю тока, чем ионы, двигающиеся медленнее. Доля тока, переносимая данным сортом частиц, называется числом переноса этого сорта частиц (t i).При униполярной проводимости число переноса того сорта ионов, которые переносят ток, равно единице, так как весь ток переносится этим сортом ионов. Но при биполярной проводимости число переноса каждого сорта ионов меньше единицы, а

причем под числом переноса нужно понимать абсолютное значение доли тока, приходящегося на данный сорт ионов без учета того, что катионы и анионы переносят электрический ток в разных направлениях.

Число переноса какого-нибудь одного сорта частиц (ионов) при биполярной проводимости не является величиной постоянной, характеризующей только природу данного сорта ионов, а зависит и от природы частиц-партнеров. Например, число переноса ионов хлора в растворе соляной кислоты меньше, чем в растворе КС1 той же концентрации, поскольку ионы водорода более подвижны, чем ионы калия. Методы определения чисел переноса многообразны, и их принципы изложены в соответствующих лабораторных практикумах по теоретической электрохимии.

Прежде чем перейти к рассмотрению электрической проводимости конкретных классов веществ, остановимся на одном общем вопросе. Любое тело двигается в постоянном поле действующих на него сил с ускорением. Между тем, ионы во всех классах электролитов, кроме газов, двигаются под влиянием электрического поля данной напряженности с постоянной скоростью. Для объяснения этого представим себе силы, действующие на ион. Если масса иона m и скорость его движения w, то ньютонова сила mdw /dt будет равна разности силы электрического поля (М),двигающей ион, и реактивной силы (L’),тормозящей его движение, ибо ион двигается в вязкой среде. Реактивная сила тем больше, чем больше скорость движения иона, т. е. L’ = Lw (здесь L - коэффициент пропорциональности). Таким образом

После разделения переменных имеем:

Обозначив М – Lw = v , получим dw = – dv /L и

или

Константу интегрирования определяем из граничного условия: при t = 0 w = 0, т. е. отсчет времени начинаем с момента начала движения иона (момента включения тока). Тогда:

Подставив вместо постоянной ее значение, получим окончательно.

Похожие статьи